logo
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean feugiat dictum lacus, ut hendrerit mi pulvinar vel. Fusce id nibh

Mobile Marketing

Pay Per Click (PPC) Management

Conversion Rate Optimization

Email Marketing

Online Presence Analysis

Fell Free To contact Us
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean feugiat dictum lacus

1-677-124-44227

[email protected] business.com

184 Main Collins Street West Victoria 8007

Top

Soal Persamaan Linear Dua Variabel (SPLDV)

Soal Persamaan Linear Dua Variabel (SPLDV)

Soal Persamaan Linear Dua Variabel (SPLDV) Kelas 8 SMP

I. Berilah tanda silang (X) pada huruf a, b, c atau d di depan jawaban yang paling benar !


1. Perhatikan persamaan-persamaan berikut !
(i) 3p + 5q = 10
(II) 2×2 – 3y = 6
(III) 3y = 5x – 2
(IV) 3x + 5 = 2x – 3y

Yang bukan merupakan persamaan linear dua variabel adalah ….
a. (I)
b. (II)
c. (III)
d. (IV)
Pembahasan:
(i) 3p + 5q = 10 : merupakan PLDV karena terdapat variabel p dan q
(II) 2×2 – 3y = 6 : bukan PLDV karena 2×2 merupakan bagian dari persamaan kuadrat bukan persamaan linear

(III) 3y = 5x – 2 : merupakan PLDV karena terdapat variabel x dan y
(IV) 3x + 5 = 2x – 3y : merupakan PLDV karena terdapat variabel x dan y
Jawaban: b

2. Perhatikan persamaan-persamaan berikut !
(i) 15 – 5x = 23
(II) 5x = 20 – 3y
(III) x2 – y2 = 49
(IV) 3×2 + 6x + 12 = 0

Yang merupakan persamaan linear dua variabel adalah ….
a. (I)
b. (II)
c. (III)
d. (IV)
Pembahasan:
(i) 15 – 5x = 23 : bukan PLDV karena hanya terdapat satu variabel
(II) 5x = 20 – 3y : merupakan PLDV kkarena terdapat variabel x dan y
(III) x2 – y2 = 49 : bukan PLDV karena x2 dan y2 merupakan bagian dari persamaan kuadrat bukan persamaan linear

(IV) 3×2 + 6x + 12 = 0 : bukan PLDV karena terdapat 3×2 merupakan bagian dari persamaan kuadrat bukan persamaan linear
Jawaban: b

3. Rina membeli 3 kg apel dan 2 kg jeruk. Uang yag harus dibayarkan adalah Rp 65.000,00.
Jika diubah menjadi persamaan linear dua variabel, maka pernyataan tersebut menjadi ….
a. 3x + 2y = 65.000
b. 3x – 2y = 65.000
c. 3x + 2y = 65
d. 3x – 2y = 65
Pembahasan:
Misal x = apel
Y = jeruk
Harga 3 kg apel dan 2 kg jeruk = 65.000
Jika dijadikan persamaan linear dua variabel adalah 3x +2y = 65.000
Jawaban: a

4. Seorang pedagang menjual 3 buah pensil dan 5 buah buku seharga Rp 19.500,00.
Jika diubah menjadi persamaan linear dua variabel, maka pernyataan tersebut menjadi ….
a. 3x – 5y = 19.5
b. 3x + 5y = 19.500
c. 3x – 5y = 19.5
d. 3x + 5y = 19.500
Pembahasan :
Misal x = pensil
Y = buku
Harga 3 buah pensil dan 5 buah buku adalah 19.500
Jika dijadikan persamaan linear dua variabel adalah 3x + 5y = 19.500
Jawaban : d

5. Keliling sebuah persegi panjang adalah 64 cm.
Jika diubah menjadi persamaan linear dua variabel, maka pernyataan tersebut menjadi ….
a. 2p – 2l = 64
b. p x l = 64
c. 2p + 2l = 64
d. p + l = 64
Pembahasan :
Rumus keliling persegi panjang = (2 x panjang) + (2 x lebar)
Missal :

p = panjang
l = lebar
Bentuk persamaan linear akan menjadi : 2p + 2l =64
Jawaban : c

6. Himpunan penyelesaian dari sistem persamaan x + y = 12, x – y = 4 adalah ….
a. { 4 , 8 }
b. { 12 , 4 }
c. { 4 , 12 }
d. { 8 , 4 }

7. Himpunan penyelesaian dari sistem persamaan x – y = 6, x + y = 10 adalah ….
a. {8 , 2}
b. {2 , 8}
c. {6 , 10}
d. {10 , 6}

8. Himpunan penyelesaian dari sistem persamaan 2x – 5y = 1, 4x – 3y = 9 adalah ….
a. {1, 3 }
b. {2, 5 }
c. {3, 1 }
d. {4, 3 }

9. Himpunan penyelesaian dari sistem persamaan 2x – y = 4, -2x – 3y = -4 adalah ….
a. {4 , -4}
b. {2 , 0}
c. {2 , 3}
d. {2 , -2}

10. Himpunan penyelesaian dari sistem persamaan 4x = 5y, 3y = 7 – 5x adalah ….
a. {-35/13 , -28/13}
b. {28/13, 35/13}
c. {-28/13, -35/13}
d. {35/13 , 28/13}

11. Himpunan penyelesaian dari sistem persamaan y = 2x, 6x – y = 8 adalah ….
a. {2,6}
b. {2,8}
c. {2,2}
d. {2,4}
Pembahasan : metode substitusi
y = 2x ……………………..(i)
6x – y = 8……………….. (ii)
Substitusikan persamaan (i) ke dalam persamaan (ii) sehingga diperoleh
6x – (2x) = 8
4x = 8
X = 8/4
X = 2
Substitusikan x=2 pada persamaan II sehingga diperoleh
y = 2x
y = 2 (2)
y = 4
Jadi himpunan penyelesaian dari persamaan di atas adalah {2,4}
Jawaban : d

12. Himpunan penyelesaian dari sistem persamaan x = 2y + 9, x + 5y + 5 = 5 adalah ….
a. {2,9}
b. {135/31 , -9/7}
c. {5,5}
d. {9,5}
Pembahasan : metode substitusi
x = 2y + 9……………………….(i)
x + 5y + 5 = 5……………….(ii)
Substitusikan persamaan (i) ke dalam persamaan (ii) sehingga diperoleh
(2y + 9) + 5y + 5 = 5
7y + 14 = 5
7y = 5 – 14
7y = -9
y = -9/7
Substitusikan y = -9/7 pada persamaan (ii) sehingga diperoleh
x = 2 (-9/7) + 9
x = -18 /7 + 9
x = -162/63 + 567/63
x = 405/63
x = 135/31
Jadi himpunan penyelesaian dari persamaan di atas adalah {135/31 ,  -9/7}
Jawaban : b

13. Himpunan penyelesaian dari sistem persamaan 2x + y = 0, 7x + 5y =1 adalah ….
a. {-1/3 , -2/3}
b. {-1/3 , 2/3}
c. {1/3 , 2/3}
d. {1/3 , -2/3}
Pembahasan : metode substitusi
2x + y = 0 => y = -2x ……………….(i)
7x + 5y =1…………………………………..(ii)
Substitusikan persamaan (i) ke dalam persamaan (ii) sehingga diperoleh
7x + 5(-2x) =1
7x -10x = 1
-3x = 1
x = -1/3

Substitusikan x = -1/3 pada persamaan (ii) sehingga diperoleh
2(-1/3) + y = 0
-2/3 + y =0
y = 2/3
Jadi himpunan penyelesaian dari persamaan di atas adalah {-1/3 , 2/3}
Jawaban : b

14. Himpunan penyelesaian dari sistem persamaan 6u – v = 1, 4u – 3v + 4 = 0 adalah ….
a. {-1/2 , 2}
b. {1/2 , -2}
c. {1/2 , 2}
d. {-1/2 , -2}
Pembahasan : metode substitusi
6u – v = 1 => 6u – 1 = v………………(i)
4u – 3v + 4 = 0……………………………….(ii)
Substitusikan persamaan (i) ke dalam persamaan (ii) sehingga diperoleh
4u – 3(6u – 1) + 4 = 0
4u – 18u + 3 + 4= 0
-14u +7 = 0
-14u = -7
U = -7/-14
U = ½
Substitusikan u = ½ pada persamaan (ii) sehingga diperoleh
6 (1/2) – v = 1
3 – v = 1
-v = 1 – 3
-v = -2
v = 2
Jadi himpunan penyelesaian dari persamaan di atas adalah {1/2 , 2}
Jawaban : c

15. Himpunan penyelesaian dari sistem persamaan 5p + q = 10, 14p + 3q = 18 adalah ….
a. {12 , -50}
b. {1, 2}
c. {18, -10}
d. {14, 3}
Pembahasan : metode substitusi
5p + q = 10 => q = 10 – 5p…………………….(i)
14p + 3q = 18…………………………………………..(ii)
Substitusikan persamaan (i) ke dalam persamaan (ii) sehingga diperoleh
14p + 3 ( 10 – 5p) = 18
14p + 30 -15p = 18
-p = 18 – 30
-p = -12
P = 12
Substitusikan P = 12 pada persamaan (ii) sehingga diperoleh
q = 10 – 5p
q = 10 – 5 (12)
q = 10 – 60
q = -50
Jadi himpunan penyelesaian dari persamaan di atas adalah {12 , -50}
Jawaban : a

16. Salah satu himpunan penyelesaian dari persamaan 3x – 2y = -18 adalah ….
a. {-6, 9}
b. {2, -12}
c. {4, 15}
d. {0, -9}
Pembahasan : metode termudah
3 (-6) – 2(9) = -18
-18 -16 = -18
-34 = -18

3 (2) – 2(-12) = -18
6 + 24 = -18
30 = -18

3 (4) – 2(15) = -18
12 – 30 = -18
-18 = -18

3 (0) – 2 (-9) = -18
0 + 18 = -18
Jawaban : c

17.

Contoh Gambar Grafik Soal Persamaan Linear Dua Variabel (SPLDV)

Grafik di atas merupakan himpunan penyelesaian dari persamaan ….
a. 2x + y = 6, x, y = є R
b. 2x – y = 6, x, y = є R
c. -2x + y = 6, x, y = є R
d. -2x – y = 6, x, y = є R
Pembahasan :
(3 , 0 ) dan (0 , 6)
Jawaban a. 2x + y = 6, x, y = є R
Ketika x = 3 dan y = 0
2x + y = 6
2 (3) + 0 = 6
6 = 6 (sama)
Ketika x = 0 dan y = 6
2x + y = 6
2 (0) + 6 = 6
6 = 6 (sama)
Jadi persamaan dari grafik di atas adalah 2x + y =6
Jawaban : a

18. Persamaan yang ekuivalen dengan x – y = 5 adalah ….
a. 2x + 2y = 5
b. 2x + 2y = 10
c. 2x – 2y = 10
d. 2x – 2y = 5
Pembahasan :
2x – 2y = 10 (dibagi 2)
X – y = 5
Jawaban : c

19. Penyelesaian dari sistem persamaan x – 2y = 3 dan 5x – 2y = -1 adalah ….
a. x = -1 dan y = -2
b. x = -2 dan y = -1
c. x = 1 dan y = -2
d. x = -1 dan y = 2
Pembahasan : Metode Substitusi
x – 2y = 3 => x = 3 + 2y…………………..(i)
5 x – 2y = -1………………………………………(ii)
Substitusikan persamaan (i) ke dalam persamaan (ii) sehingga diperoleh
5 ( 3 + 2y) – 2y = -1
15 + 10y – 2y = -1
8y = -1 – 15
8y = -16
y = -16 / 8
y = -2
Substitusikan y = -2 pada persamaan (i) sehingga diperoleh
x = 3 + 2 (-2)
x = 3 – 4
x = -1
Jadi nilai x = -1 dan nilai y = -2
Jawaban : a

20. Jika diketahui x = 2 dan y = 3 dalam persamaan px + qy = 5 dan px – qy = 3, maka ….
a. p = -2 dan q = 1/3
b. p = 2 dan q = ―1/3
c. p = 2 dan q = 1/3
d. p = -2 dan q = ―1/3

21. Diketahui sistem persamaan 3x + 2y = 8; x – 5y = ― 37. Nilai 6x + 4y adalah ….
a. ―30
b. ―16
c. 16
d. 30
Pembahasan :
3x + 2y = 8
3 (-37 + 5y) + 2y = 8
-111 + 15y + 2y = 8
17y = 119
Y =7
X = -37 + 5 (7)
X = -37 +35
X = -2
Nilai 6 x + 4y = 6 (-2) + 4 (7)
= -12 + 28
= 16
Jawaban : c

22. Jika x = 2y disubstitusikan pada persamaan x + y = ―6 maka himpunan penyelesaiannya adalah ….
a. {-8, -2}
b. {-2, -4}
c. {-4, -2}
d. {26, 24}
Pembahasan : metode termudah
2y + y = -6
3y = -6
y = -6 /3
y = -2
x = 2y
x = 2 (-2)
x = -4
Jawaban : c

23. Harga 4 buah donat dan 5 buah roti kukus adalah Rp 4.550,00. Sedangkan harga 2 buah donat dan 3 buah roti kukus adalah Rp 2.550,00. Harga 1 buah donat dan 2 buah roti kukus adalah ….
a. Rp 450,00 dan Rp 550,00
b. Rp 550,00 dan Rp 450,00
c. Rp 450,00 dan Rp 1.100,00
d. Rp 1.100,00 dan Rp 450,00

24. Persamaan berikut yang grafiknya melalui titik (1,2) adalah ….
a. x + 2y = 5
b. x + y = 2
c. 2x + y = 2
d. 2x + 2y = 5
Pembahasan :
x = 1
y = 2

x + 2y = 5 => x + 2y = 1 + 2 (2) = 5
x + y = 2 => x + y = 1 + 2 = 3
2x + y = 2 => 2x + y = 2(1) + 2 =4
2x + 2y = 5 => 2x + 2y = 2(1) + 2(2) = 6
Jawaban : a

25. Harga 8 buah buku tulis dan 6 buah pensil Rp 14.400,00. Harga 6 buah buku tulis dan 5 buah pensil Rp 11.200,00. Jumlah harga 5 buah buku tulis dan 8 buah pensil adalah ….
a. Rp 11.800,00
b. Rp 14.800,00
c. Rp 12.800,00
d. Rp 13.600,00

No Comments

Post a Comment

Open chat